Hyperspace Docs
Hyperspace Homepage
  • Getting started
    • Overview
      • Hyperspace Advantages
      • Hyperspace Search
    • Quick Start
  • flows
    • Setting Up
      • Installing the Hyperspace API Client
      • Connecting to the Hyperspace Server
      • Creating a Database Schema Configuration File
        • Vector Similarity Metrics
        • Index Type Methods
      • Creating a Collection
      • Uploading Data to a Collection
      • Building and Running Queries
        • Building a Lexical Search Query
        • Building a Vector Search Query
        • Building a Hybrid Search Query
      • Retrieving Results
    • Data Collections
      • Uploading Data
      • Accessing Data
      • Supported Data Types
    • Queries
      • DSL Query interface
        • Aggregations
        • Bool Query
        • Candidate Generation and Metadata Filtering
        • Scoring and Ranking
  • Reference
    • Hyperspace Query Flow
    • Features and Benefits
    • Search Processing Unit (SPU)
    • Hyperspace Document Prototype
  • API Documentation
    • Hyperspace Client
      • add_batch
      • add_document
      • async_req
      • clear_collection
      • collections_info
      • commit
      • create_collection
      • delete_collection
      • delete_by_query
      • dsl_search
      • get_schema
      • get_document
      • reset_password
      • search
      • update_by_query
      • update_document
    • DSL Query Framework
      • Aggregations
        • Cardinality Aggregation
        • Date Histogram
        • Metric Aggregations
        • Terms Aggregation
      • Bool Queries
        • Free Text Search
        • 'match' Clause
        • 'filter' Clause
        • 'must' Clause
        • 'must_not' Clause
        • 'should' Clause
        • 'should_not' Clause
      • Candidate Generation and Metadata Filtering
        • Geo Coordinates Match
        • Range Match
        • Term Match
      • Scoring and Ranking
        • Boost
        • 'dis_max'
        • Function Score
        • Rarity Score (TF-IDF)
  • Releases
    • 2024 Releases
Powered by GitBook
On this page
  1. Reference

Hyperspace Document Prototype

The following outlines the Hyperspace document prototype (not all field types are included).

Document prototype
document = {
        'some_counter'       : 8,                        # unsigned integer
        'visit_times_1y'     : ['Saturday, August 21, 2010 11:22:31 AM','Friday, August 20, 2010 7:35:51 AM'] # date         
        'field0_embeded32'   : [0.45,0.99,0.543,0.324],  # K elements vector
        'field2_int'         : None,                     # null integer
        'field3_float'       : 7.45,                     # scalar float
        'field4_list_float'  : [7.459],                  # list of float - 1 element 
        'field5_list_float'  : [7.459, 3.4],             # list of float - 2 element 
        'field6_list_float'  : [],                       # list of float - 0 element 
        'field7_str'         : None,                     # scalar string - null
        'field8_str'         : 'jojo',                   # scalar string
        'field10_list_str'   : [],                       # list of string - 0 element           
        'field11_list_str'   : ['jojo'],                 # list of string - 1 element 
        'field12_list_str'   : ['jojo', 'koko']          # list of string - 2 element
        'field21_list_ip'    : [171.180.143.162, 211.34.144.18, 35.115.68.135] # geo location          
        }
        

Most fields support the use of list types, where a vector field type is used for vector and hybrid search. Other types (metadata) are used in lexical and hybrid searches.

PreviousSearch Processing Unit (SPU)NextHyperspace Client

Last updated 9 months ago