Hyperspace Docs
Hyperspace Homepage
  • Getting started
    • Overview
      • Hyperspace Advantages
      • Hyperspace Search
    • Quick Start
  • flows
    • Setting Up
      • Installing the Hyperspace API Client
      • Connecting to the Hyperspace Server
      • Creating a Database Schema Configuration File
        • Vector Similarity Metrics
        • Index Type Methods
      • Creating a Collection
      • Uploading Data to a Collection
      • Building and Running Queries
        • Building a Lexical Search Query
        • Building a Vector Search Query
        • Building a Hybrid Search Query
      • Retrieving Results
    • Data Collections
      • Uploading Data
      • Accessing Data
      • Supported Data Types
    • Queries
      • DSL Query interface
        • Aggregations
        • Bool Query
        • Candidate Generation and Metadata Filtering
        • Scoring and Ranking
  • Reference
    • Hyperspace Query Flow
    • Features and Benefits
    • Search Processing Unit (SPU)
    • Hyperspace Document Prototype
  • API Documentation
    • Hyperspace Client
      • add_batch
      • add_document
      • async_req
      • clear_collection
      • collections_info
      • commit
      • create_collection
      • delete_collection
      • delete_by_query
      • dsl_search
      • get_schema
      • get_document
      • reset_password
      • search
      • update_by_query
      • update_document
    • DSL Query Framework
      • Aggregations
        • Cardinality Aggregation
        • Date Histogram
        • Metric Aggregations
        • Terms Aggregation
      • Bool Queries
        • Free Text Search
        • 'match' Clause
        • 'filter' Clause
        • 'must' Clause
        • 'must_not' Clause
        • 'should' Clause
        • 'should_not' Clause
      • Candidate Generation and Metadata Filtering
        • Geo Coordinates Match
        • Range Match
        • Term Match
      • Scoring and Ranking
        • Boost
        • 'dis_max'
        • Function Score
        • Rarity Score (TF-IDF)
  • Releases
    • 2024 Releases
Powered by GitBook
On this page
  1. API Documentation
  2. Hyperspace Client

search

The function search(query_schema, size, function_name, collection_name) runs search queries inside a collection.

Input

  • query_schema – Specifies the document for the query schema object.

  • size – Specifies the number of results to return.

  • function_name – Specifies the scoring function to be used in the Classic Search query, as described in Step 1, Creating the Scoring Function.

  • collection_name – Specifies the Collection in which to search.

  • fields (optional) – Specifies the document fields to be returned with each result.

Example

params= {
         "name": "John"
        }
results = hyperspace_client.search(params,
                                   size=10,                 
                                   collection_name=collection_name
                                   function_name='score_function')
int size = 10;
String params= "{" +
    "\"name\": \"John\""+
    "}";
String functionName = "score_function";
await hyperspaceClient.search(collectionName, size, params, functionName);
let size = 10;
let params= {
    "name": "John"
}
let functionName = 'score_function';
await hyperspaceClient.search(collectionName, size, params, functionName);

Response

A list of candidates, as shown in the example below

{ "candidates": 1, "similarity": [ { "document_id": "29", "score": 10.0, "fields": { "FirstSeenTime": 1506116398, "City": "Jakarta" } } ], "took_ms": 33.625 }

Previousreset_passwordNextupdate_by_query

Last updated 11 months ago