Hyperspace Docs
Hyperspace Homepage
  • Getting started
    • Overview
      • Hyperspace Advantages
      • Hyperspace Search
    • Quick Start
  • flows
    • Setting Up
      • Installing the Hyperspace API Client
      • Connecting to the Hyperspace Server
      • Creating a Database Schema Configuration File
        • Vector Similarity Metrics
        • Index Type Methods
      • Creating a Collection
      • Uploading Data to a Collection
      • Building and Running Queries
        • Building a Lexical Search Query
        • Building a Vector Search Query
        • Building a Hybrid Search Query
      • Retrieving Results
    • Data Collections
      • Uploading Data
      • Accessing Data
      • Supported Data Types
    • Queries
      • DSL Query interface
        • Aggregations
        • Bool Query
        • Candidate Generation and Metadata Filtering
        • Scoring and Ranking
  • Reference
    • Hyperspace Query Flow
    • Features and Benefits
    • Search Processing Unit (SPU)
    • Hyperspace Document Prototype
  • API Documentation
    • Hyperspace Client
      • add_batch
      • add_document
      • async_req
      • clear_collection
      • collections_info
      • commit
      • create_collection
      • delete_collection
      • delete_by_query
      • dsl_search
      • get_schema
      • get_document
      • reset_password
      • search
      • update_by_query
      • update_document
    • DSL Query Framework
      • Aggregations
        • Cardinality Aggregation
        • Date Histogram
        • Metric Aggregations
        • Terms Aggregation
      • Bool Queries
        • Free Text Search
        • 'match' Clause
        • 'filter' Clause
        • 'must' Clause
        • 'must_not' Clause
        • 'should' Clause
        • 'should_not' Clause
      • Candidate Generation and Metadata Filtering
        • Geo Coordinates Match
        • Range Match
        • Term Match
      • Scoring and Ranking
        • Boost
        • 'dis_max'
        • Function Score
        • Rarity Score (TF-IDF)
  • Releases
    • 2024 Releases
Powered by GitBook
On this page
  1. API Documentation
  2. DSL Query Framework
  3. Candidate Generation and Metadata Filtering

Term Match

The term query is used to search for documents that contain a specific exact value in a particular field. It is designed for exact matches and is commonly used for fields that are not analyzed, such as keyword fields.

You can match either keywords or keywords or lists . For keywords, match requires exact match between the keywords and for lists of keywords, it requires an exact match between any two keywords in the two lists.

Example 1:

{
  "query": {
    "term": {
      "Continent": "Asia"
    }
  }
}

In the above example, Candidates must include the field 'Continent' and contain the value "Asia" under the field 'Continent' will be returned

Example 2:

{
  "query": {
    "term": {
      "Continent": ["Asia", "Europe", "Africa"]
    }
  }
}

In the above example, candidates must include the field 'Continent' with any of the following values - "Asia", "Europe", "Africa" under the field 'Continent' will be returned

PreviousRange MatchNextScoring and Ranking

Last updated 11 months ago