Overview
Fast queries at scale
Relevant search results
Hyperspace documents store vectors and metadata
Creating collections and ingesting documents
hyperspace_client.create_collection('schema.json', 'collection_name')
documents = [
{'document_id': '1',
'field 1: 'value 1',
'field 2: 'value 2',
'dense_vector 1': [0.85,0.2,0.2, 0.1]
},
{'document_id': '2',
'field 1: 'value 4'
'dense_vector 1': [0.2,0.1,0.2, 0.85],
'dense_vector 2': [0.9,0.3,0.3, 0.1]
},
]
hyperspace_client.add_batch(documents, collection_name)JsonObject schema = (JsonObject) JsonParser.parseReader(new FileReader("schema.json"));
hyperspaceClient.createCollection('collection_name', 'schema.json');
ArrayList<Document> docs = new ArrayList<Document>();
Document doc1 = new Document();
doc1.setId("1");
doc1.putAdditionalProperty("field 1", "value 1");
doc1.putAdditionalProperty("field 2", "value 2");
doc1.putAdditionalProperty("dense_vector 1", [0.85,0.2,0.2, 0.1]);
Document doc2 = new Document();
doc2.setId("2");
doc2.putAdditionalProperty("field 1", "value 4");
doc2.putAdditionalProperty("dense_vector 1", [0.2,0.1,0.2, 0.85]);
doc2.putAdditionalProperty("dense_vector 1", [0.9,0.3,0.3, 0.1] );
docs.add(doc1);
docs.add(doc2);
hyperspaceClient.addBatch(collectionName, docs);Creating keyword based queries
Submitting a DSL query
Creating hybrid queries
Submitting a python query
Last updated